Equilibrium states for non-uniformly hyperbolic systems: Statistical properties and analyticity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes

In this paper we consider horseshoes containing an orbit of homoclinic tangency accumulated by periodic points. We prove a version of the Invariant Manifolds Theorem, construct finite Markov partitions and use them to prove the existence and uniqueness of equilibrium states associated to Hölder continuous potentials.

متن کامل

On Statistical Properties for Equilibrium States of Partially Hyperbolic Horseshoes

We derive some statistical properties for equilibrium states of partially hyperbolic horseshoes. We define a projection map associated to the horseshoe and prove a spectral gap for its transfer operator acting on the space of Hölder continuous observables. From this we deduce an exponential decay of correlations and a central limit theorem. We finally extend these results to the horseshoe.

متن کامل

Invariant Pre-foliations for Non-resonant Non-uniformly Hyperbolic Systems

Given an orbit whose linearization has invariant subspaces satisfying some non-resonance conditions in the exponential rates of growth, we prove existence of invariant manifolds tangent to these subspaces. The exponential rates of growth can be understood either in the sense of Lyapunov exponents or in the sense of exponential dichotomies. These manifolds can correspond to “slow manifolds”, whi...

متن کامل

Multifractal analysis of non-uniformly hyperbolic systems

We prove a multifractal formalism for Birkhoff averages of continuous functions in the case of some non-uniformly hyperbolic maps, which includes interval examples such as the Manneville–Pomeau map.

متن کامل

Smooth Conjugacy and S{r{b Measures for Uniformly and Non-uniformly Hyperbolic Systems

We give a new proof of the fact that the eigenvalues at correspondig periodic orbits form a complete set of invariants for the smooth conjugacy of low dimensional Anosov systems. We also show that, if a homeomorphism conjugating two smooth low dimensional Anosov systems is absolutely continuous , then it is as smooth as the maps. We furthermore prove generalizations of thse facts for non-unifor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Continuous Dynamical Systems

سال: 2021

ISSN: 1553-5231

DOI: 10.3934/dcds.2021045